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ABSTRACT 
The1 flare stack is the last line of defense in the safe production 
of large-scale chemical plants. Monitoring black smoke produced 
by the incomplete flare stack exhaust combustion can effectively 
reduce environmental pollution and production accident. In 
order to improve the ability to recognition and analyze the black 
smoke, high-resolution flare stack scene images are in urgent 
need. To this end, we in this paper propose a super-resolution 
algorithm based on convolutional network that focuses only on 
smoke area for the purpose of identifying the smoke of flare 
stack. With a lightweight convolutional neural network 
structure, our network specializes in learning smoke 
characteristics mapping between the low-resolution images and 
the associated high-resolution. To verify validity, our algorithm 
compares the super-resolution quality of the smoky region of the 
flare stack image with several classic super-resolution 
algorithms. The experimental results show that our algorithm is 
superior to the classical algorithms when applied to smoke 
images. 
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• Computing methodologies → Artificial intelligence; 
Computer vision; Computer vision problems; Reconstruction 
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1 INTRODUCTION 
With the rapid development of industrial automation, high-
resolution industrial surveillance images are becoming more and 
more urgent, such as flare stack monitoring. Flare stack is a 
gas combustion device used in industrial plants such 
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as petroleum refineries, chemical plants, and natural gas 
processing plants. Insufficient flare stack combustion will 
produce a large number of toxic and harmful gases, causing 
accidents and pollution. The surface phenomenon of insufficient 
flare stack burning is the generation of black smoke. Therefore, 
the effective identification and analysis of the flare stack black 
smoke can avoid the above hazards. Due to the restriction of the 
factory environment and facilities, the low resolution of the 
collected images brings great difficulties to the identification and 
analysis of the black smoke. Unclear images may ignore a part of 
the smoke and cause a certain safety hazard. For this reason, an 
efficient super-resolution algorithm is a breakthrough in solving 
this problem.  

Single image super resolution reconstruction (SISR) is an 
important technique for building bridges between input low-
resolution (LR) images and output high-resolution (HR) images. 
In recent years, more attention has been paid to it. The 
challenges of SISR mainly include: identifying important visual 
clues, filling details, and as far as possible faithfully and 
beautifully presented [1]. At present, SISR can generally be 
divided into two categories: Reconstruction-based and Example 
Learning-based. The reconstruction-based method aims to 
reconstruct the high-frequency signals lost during the degrading 
process. Irani et al. [2] formulated the iterative back-projection 
(IBP) SR reconstruction approach that is similar to the back 
projection used in tomography. In this approach, the HR image 
is estimated by back projecting the error (difference) between 
simulated LR images via imaging blur and the observed LR 
images. Dai et al. [3] designed the regularization term of the 
difference weighted sum of the center pixel and the neighboring 
pixels by using the prior knowledge of continuity on both sides 
of the edge where the contrast is large and sharp. However, this 
method always produces ambiguous results for the texture area, 
since the texture image features do not satisfy the priori 
assumptions. Singh et al. [4] used pixel values at the edge 
algorithm learning a priori from the image block instead of the 
edge in order to cover various image structures. There are a 
number of other traditional super-resolution algorithms that 
have been proposed, such as [5,6,7,8]. 

Traditional super-resolution algorithm recovers image quality 
based on extracting image features envisioned by researchers. 
However, the feature extraction designed by the researchers has 
some limitations. Recently, more and more attention has been 
paid to the super-resolution algorithm based on deep 
convolutional neural networks. Convolutional neural networks 
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can learn useful features by themselves, and some of these 
features go beyond manual methods. Such as, Dong et al. first 
proposed a super-resolution algorithm based on deep learning, 
with a very simple network structure, using only three 
convolutional layers [9]. Kim et al. found that only the high-  
frequency partial residuals between high-resolution and low-
resolution images need to be learned. Therefore, they proposed a 
residual-based super-resolution network and improved the 
number of network layers [10]. Lai et al. proposed a Laplacian 
Pyramid Super-Resolution Network to progressively reconstruct 
the sub-band residuals of high-resolution images [11]. Lim et al. 
proposed a super-resolution model based on optimized residual 
network, which removes the redundant modules [12]. Tai et al. 
designed a deeper network to further improve super-resolution 
performance by using recursive and weight sharing strategies 
[13]. Existing convolutional neural network-based super-
resolution algorithms are constantly increasing the number of 
network layers to better restore complex and diverse details in 
natural images. However, the above algorithm is clearly 
redundant in structure for black smoke images. In order to solve 
the super-resolution algorithm for the flare stack black smoke 
problem, we use the advanced deep convolutional neural 
network method. We consider that the black smoke image 
contains only simple texture and edge information compared to 
the complex structural information in the natural image. 
Therefore, we designed a lightweight convolutional neural 
network, which performs super-resolution reconstruction after 
extracting simple features of black smoke. Experiments prove 
the superiority of our algorithm in smoky super resolution. 

The remainder of this paper is organized as follows. In 
Section 2, we mainly introduce the principle of structural design 
and parameter selection of our convolutional neural network. In 
Section 3, we explain the experimental details, and compared 
with the existing traditional super-resolution algorithm to verify 
the advantages of our algorithm. And we summarize the 
experimental results. Some concluding remarks and future works 
are provided in Section 4. 

2 ALGORITHM DETAILS 
The existing classical super-resolution algorithm is mainly 
proposed for the characteristics of natural scene images, lacking 
to deal with special scene problems. For the problem of super-

resolution of the torch black smoke image, we designed a 
convolutional neural network to specifically study the super-
resolution mapping of the black smoke region. We name the 
proposed network as a smoky super-resolution convolutional 
neural network, abbreviated as ‘SSRCN’. The algorithm flow is 
shown in the Fig. 1. And the details of the algorithm are as 
follows. 

2.1 Image Preprocessing in Algorithm Flow 
The purpose of this algorithm is mainly to improve the quality of 
the black smoke region in the super-resolution image of the flare 
stack image to better identify and analyze the black smoke. 
Therefore, we don't need to process color images for human 
feelings. We only consider the luminance channel (in YCrCb 
color space) in our proposed SSRCN. Next, we upscale the image 
to be processed by bicubic interpolation to get the desired size. 
The principle of our algorithm is that our SSRCN learns the 
details needed for super-resolution reconstruction to recover the 
details of the low-quality map obtained by the bicubic algorithm. 

2.2 Design of Network Structure 

Our SSRCN has five layers, and it’s each layer is named based on 
the characteristics of the convolutional neural Network as 
illustrated in Fig. 1. In low-level feature extraction (LFE) layer, 
the features of the input image are extracted by a filter with a 
convolution kernel size of 5. In a convolutional neural network, 
the initial convolutional layer extracts simple features of the 
image, such as edges, corners, and textures. However, in the 
process of super-resolution reconstruction, these simple features 
are more important for image restoration. Therefore, the number 
of convolution kernels in the first layer is much larger compared 
to other layers to extract richer simple features. In low-level 
feature fusion (LFF) layer, the filter with a convolution kernel 
size of one does not change the geometry of the feature map 
extracted from the previous layer. It only fuses the feature map 
by pixels to extract a richer feature map, and reduces the number 
of transmitted feature map channels, thereby reducing the 
network parameter. In depth feature extraction (DFE) layer, 
filters with a convolution kernel size of three are used to 
nonlinearly transform the feature map of the previous layer and 
the characteristics are further refined to reduce the network 
parameters. In image reconstruction (IR) layer, the 

Figure 1: The algorithm flow of our proposed smoke image super-resolution method. 
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reconstruction of super-resolution images is performed using the 
feature maps previously presented. In image pixel fine-tuning 
(DFE) layer, the super-resolution image reconstructed from the 
previous layer is fine-tuned by pixels by a filter with a 
convolution kernel size of one. In our SSRCN, all activation 
functions are set to ReLU in order to ensure that the pixel value 
is positive, and the network uses padding operations to ensure 
that the network output size is the same as the input. For the 
convenience of the reader, we list the detailed parameters of the 
network in Table 1. 

Table 1: Model Relevant Hyper-Parameters 

Layer Layer Type Hyper-parameters 
Input Input Image size: 96×96 

LFE convolution 

Filters size: 5×5 
Filter number: 128 
Stride: 1, padding 

Activitionfunction: ReLU 

LFF convolution 

Filters size: 1×1 
Filter number: 64 
Stride: 1, padding 

Activition function: ReLU 

DFE convolution 

Filters size: 3×3 
Filter number: 32 
Stride: 1, padding 

Activition function: ReLU 

IR convolution 

Filters size: 5×5 
Filter number: 1 

Stride: 1, padding 
Activition function: ReLU 

DFE convolution 

Filters size: 1×1 
Filter number: 1 

Stride: 1, padding 
Activition function: ReLU 

2.3 Network Training Configuration Details 
The image data used by our SSRCN during training are patches 
of black smoke with a length and width of 96×96, as shown in 
Fig. 2. The image needs to be normalized in order to make the 
network easier to converge during training. The total number of 
pictures in the training process is 3200 pieces, and the pictures 
are equally distributed for weight update and performance 
verification. Training different magnification scales requires 
separate processing of the pictures. For example, to train a 
network that is magnified three times, we need to first reduce 
the luminance channel of the image to the original one-third by 
bicubic method and then enlarge it to the original size as the 
input of the network. The original image is used as the label of 

the network. During training, the batch is set to 16 and the 
epoch is set to 150. We use Mean Squared Error (MSE) as the loss 
function and update the weights through Adam algorithm, in 
which the learning rate is set to 0.0003.  

3 EXPERIMENTS AND DISCUSSION 

3.1 Datasets and Comparison Algorithm 
For a fair comparison with the state-of-the-art SR methods, we 
performed the same preprocessing on the used flare stack scene 
image. We transform the image from the RGB color space to the 
YCrCb color space and compare only the luminance channel in 
our experiments. In order to demonstrate the effect, the 
displayed picture is a color picture obtained by combining the 
other two channels processed by bicubic method.  

We compare our SSRCN with the traditional SR methods: the 
Yang et al. [13], the Zeyde et al. [14], the ANR (Anchored 
Neighbourhood Regression) method [15], and the NE+LLE 
(Neighbor Embedding with Locally Linear Embedding) method 
[16]. We also compare it with the SRCNN algorithm based on 
the convolutional neural network. The SRCNN algorithm used 
for comparison is a model published by the website source code 
through natural image training. The implementation of other 
algorithms come from publicly available code provided online. 
All experiments were carried out in the software environment 
with Matlab2015a under Windows 10 operation system and run 
on a PC with two Inter(R) Xeon(R) E5-2683 v3 2.00GHz CPUs 
and two Nvidia GeForce GTX 1080 GPUs. 

3.2 Comparing Results 
In order to make the experiment more full and powerful. In this 
experiment, our network was trained to two magnifications, 
three times and four times. We use PSNR (Peak Signal to Noise 
Ratio) as a measure, which is a widely used metric for 
quantitatively evaluating image restoration quality, and is at 
least partially related to the perceptual quality. Firstly, one 
hundred randomly selected black smoke image patches similar to 
the training data set are used to validate the effectiveness of our 
proposed SSRCN. The results are listed in Table 2. It can be seen 
from Table 2 that our SSRCN restores the details of the black 
smoke super-resolution image obtained by the bicubic algorithm. 

Table 2: The Average Psnr and Rmse Results For One 
Hundred Smoky Image Blocks 

scal
e 

Bicubic SRCNN SSRCN (pro.) 
RMSE PSNR RMSE PSNR RMSE PSNR 

3 1.87 43.59 1.62 44.71 1.56 45.06 
4 2.55 40.86 2.29 41.79 2.16 42.26 

 

Figure 2: Dataset for super-resolution model training. 
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We photographed the actual image at the flare scene. By 
performing super-resolution processing on the field map, we 
compare the proposed SSRCN with the comparison algorithms in 
practical applications. Fig. 3 and Fig. 4 illustrate the 3x and 4x 
super-resolution effects of each algorithm on the image. Due to 
the lack of sharp edge details in black smoke images, the 
algorithm effect in the diagram cannot be clearly observed. 
However, careful observation can reveal that the greater the 
value of PSNR, the clearer visual experience of the black smoke 
image. Compared with other methods, our algorithm has obvious 
PSNR advantage in the black smoke area. At the upscaling factor 

of 3, the highest PSNR in the comparison algorithm, 44.65dB, is 
obtained by the SRCNN algorithms. However, the PSNR 
obtained by our proposed SSRCN is 45.05dB. At the upscaling 
factor of 4, the highest PSNR in the comparison algorithm, 
43.43dB, is obtained by the SRCNN algorithms. However, the 
PSNR obtained by our proposed SSRCN is 43.88dB. Although it 
seems to the human visual system that these images do not give 
much visual difference, the small difference in the PSNR may 
have influence on the accuracy of the identification of black 
smoke in the flare stack images. Therefore, this algorithm does 

Figure 3: Flare stack scene image with an upscaling factor 3. Black smoke block diagrams in the red frame area of the 
original image, and marked the PSNR of the corresponding block. 

Figure 4: Flare stack scene image with an upscaling factor 4. Black smoke block diagrams in the red frame area of the 
original image, and marked the PSNR of the corresponding block. (The Yang et al. source program cannot be used for 4x 
upsampling.) 
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not focus on people's feelings but it is for the actual needs of the 
industry. 

 We further analyze the super resolution results of the entire 
flare stack images. We analyze the local PSNR of the black 
smoke region and the global PSNR of the whole flare stack image, 
and the experimental data is listed in Table 3. At the upscaling 
factor of 3, our proposed SSRCN algorithm is optimal in the local 
PSNR of the black smoke region and not outstanding in the 
entire map. Similarly, when the upsampling factor is 4, our 
proposed SSRCN algorithm is optimal in the local PSNR of the 
black smoke region, and there is no obvious advantage in the 
entire map. This shows that our algorithm is more specific to the 
super resolution of black smoke area in images. And it has 
certain robustness to the effect of the whole image super-
resolution. 

Table 3: Local Psnr and Global Psnr Results of All Methods 

3.3 Discussions 
Through the above experiments, we can summarize the 
following three points for our study. Firstly, through deep 
convolutional neural network can learn the corresponding 
relationship of the LR/HR samples of flare stack black smoke 
images. Compared with the super resolution of the natural scene 
images, the characteristics of the black smoke images need to be 
learned is relatively simple. Therefore, we can achieve 
satisfactory results with only a small amount of learning samples. 
Secondly, because our training sample is only black smoke 
images, so in the experiment, the effect on the black smoke 
region is the best and the effect on other non-smoke regions is 
relatively poor. The SRCNN model trained by natural images is 
superior to our algorithm in the PSNR of the whole map, but 
worse than our algorithm in the black smoke region. Therefore, 
we can select specific training samples to learn a special-
application super-resolution algorithm based on convolutional 
neural network. Thirdly, our network only has a better effect on 
the black smoke area, but it does not work well on the non-
smoke area. On the contrary, it is more favorable for the 
identification and analysis of black smoke in the torch black 
smoke image. 

4 CONCLUSIONS 
The flare stack is very important for the safe production of the 
factory. Accurate monitoring of flare combustion is an important 
challenge for the current flare stack. Super-resolution processing 
of flare images can improve the identification of black smoke. 
However, the current general super-resolution algorithm does 
not perform well in super-resolution processing of black smoke 
images. For this reason, we have proposed a super-resolution 
algorithm based on convolutional neural network dedicated to 
black smoke images. By making the network only learn the 
restoration of black smoke image features, a super-resolution 
algorithm dedicated to black smoke images is obtained. 
Comparing with the classic super-resolution algorithm, our 
algorithm works best in the black smoke region of the image. 
Therefore, our algorithm can greatly improve the accuracy of 
flare stack image black smoke recognition. For the powerful 
image feature extraction capability of convolutional neural 
networks, applying a convolutional network to a specific 
industrial scene image is a new breakthrough in solving 
industrial problems. In practical applications, the reconstructed 
image of the SR algorithm does not have a high-definition 
reference image, so future work considers using more state-of-
the-art blind image quality assessment methods [17-20] to 
evaluate the performance of the SR algorithm. 
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